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Abstract—This paper discusses the use of the Sparse Matrix
Transform (SMT) to model the covariance structure of high-
dimensional data in the likelihood ratio test used for hypothesis
testing. The SMT has been shown to produce more accurate
estimates of covariance matrices when the number of training
samples n is much less than the number of dimensions p

of the data. Several experiments with face recognition and
hyperspectral images show that SMT-based hypothesis testing
can be superior to other methods in at least two general aspects:
First, the SMT-based method is more robust to the size of the
training set, remaining accurate even when only a few training
samples are available; Second, the total computation required
to apply the method is very low, making it attractive for use in
low-power devices, or in applications requiring fast computation.

I. INTRODUCTION

Statistical hypothesis testing is widely used in signal pro-
cessing and machine learning. According to the seminal
Neyman-Pearson lemma [1], when deciding between two
alternative hypotheses, the test with most discrimination power
depends on one’s knowledge of the ratio between the likeli-
hoods under both hypotheses, and therefore, the knowledge of
the data covariance matrices under both hypotheses. In practice
the true covariances are not known and we need to rely on
estimates from available training sets.
However, when the data dimensionality p is large, the

number of training samples, n available to estimate the covari-
ances involved in the likelihood ratio test is small compared
to p, making conventional covariance estimates to behave
poorly. As argued in [2], this n ! p scenario is rather
common. Nevertheless, even if one had enough samples to
obtain accurate covariance matrix estimates, when p is large,
the amount of computation required to compute their eigen-
decomposition and the memory space required to store them
would both be prohibitive, limiting the practical application of
such tests.
The Sparse Matrix Transform (SMT) [3], [4] is capable

of successfully modeling the covariance structure of high
dimensional data in the scenario when n ! p, and requiring
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low computational cost when applied. In this paper we investi-
gate the SMT deployment to estimate the covariance matrices
involved in log-likelihood ratio for hypothesis testing. We
look at three different flavors of hypothesis testing: matched
filtering, power detection and classification.
Results in detection involving hyperspectral images and face

recognition suggest that the accuracy of detectors and classi-
fiers relying on SMT is better than of competing methods when
few training samples are available, while the computation
associated with its application is significantly lower. In the case
when the true covariances are known, a sparse representation
of the covariances by the SMT can reduce the computation
required for the likelihood ratio test while yielding to similar
accuracy to the exact method.

II. THE SPARSE MATRIX TRANSFORM (SMT)
The essence of our method is to use SMTs to provide

full-rank estimates of the p × p covariance matrices used
in the detection and classification frameworks discussed in
Section III.

A. Design of the SMT transform
The SMT design consists of estimating the full set of eigen-

vectors and associated eigenvalues for a general p-dimensional
signal. More specifically, the objective is to estimate the
orthonormal matrix E and diagonal matrix Λ such that the
signal covariance can be decomposed as R = EΛEt, and to
compute this estimate from n independent training vectors,
Y = [y1, · · · ,yn]. This is done by assuming the samples are
i.i.d. Gaussian random vectors and computing the constrained
maximum log-likelihood (ML) estimates of E and Λ. In [3],
we show that these constrained ML estimates are given by

Ê = arg min
E∈ΩK

{∣∣diag(EtSE)
∣∣} (1)

Λ̂ = diag(ÊtSÊ) , (2)

where S = 1

nY Y t is the sample covariance matrix, and ΩK

is the set of allowed orthonormal transforms.
If n > p and ΩK is the set of all orthonormal transforms,

then the solution to (1) and (2) is the diagonalization of the
sample covariance, i.e, ÊΛ̂Êt = S. However, the sample
covariance is a poor estimate of the covariance when n < p.

2010 IEEE Sensor Array and Multichannel Signal Processing Workshop

978-1-4244-8977-0/10/$26.00  ©2010 IEEE 181



In order to improve the accuracy of the covariance estimate,
we will impose the constraint that ΩK be the set of sparse
matrix transforms (SMT) of order K . More specifically, we
will assume that the eigen-transformation has the form

E =
K∏

k=1

Ek = E1 · · ·EK , (3)

where each Ek is a planar rotation over some (ik, jk) coordi-
nate pair by an angle θk, and K is the model order parameter.
Intuitively, each Givens rotation, Ek, plays the same role as

the butterflies of a fast Fourier transform (FFT). In fact, the
SMT is a generalization of both the FFT and the orthonormal
wavelet transform. However, since both the ordering of the
coordinate pairs, (ik, jk), and the values of the rotation angles,
θk, are unconstrained, the SMT can model a much wider range
of transformations. It is often useful to express the order of
the SMT as K = rp, where r is the average number of
rotations per coordinate, being typically very small: r < 5.
The optimization of (1) is non-convex, so we use a greedy
optimization approach in which we select each rotation, Ek,
in sequence to minimize the cost. The greedy optimization
can be done fast if a graphical constraint can be imposed to
the data [4]. The parameter r can be estimated using cross-
validation over the training set[3], [4] or using the minimum
length description criterion proposed in [5].

B. Application of the SMT transform

Typically, r is small (< 5), so that the computation to apply
the SMT to a vector of data is very low, i.e, 2r + 1 floating-
point operations per coordinate. Therefore, we can apply the
SMT decorrelating transform to p-dimensional random vectors
in only (2r + 1)p steps.

III. HYPOTHESIS TESTING

Let x be a p-dimensional random vector drawn from a
multivariate normal distribution. One seeks to decide between
the hypotheses

H0 : x ∼ N (µA, RA)
H1 : x ∼ N (µB , RB) ,

(4)

where H0 and H1 are referred as the null and alternative hy-
potheses respectively. The Neyman-Pearson lemma [1] states
that the log-likelihood ratio test

l(x) = log

{
p(x;H1)

p(x;H0)

}
≷ η (5)

maximizes the probability of detection p(H1;H1) for a fixed
probability of false alarm p(H1;H0), which is controled by
the threshold η.
Below, we discuss how the log-likelihood ratio test in (5)

is used to test alternative hypotheses in the context of three
common problems in signal processing, involving detection
and classification of random signals.

A. Matched Filter
Let t ∈ Rp be a deterministic signal buried in additive

random clutter w ∼ N (0, R). The random vector x is
measured and one wants to make a decision on whether the
signal t is present (i.e, x = t + w), or the measurement
contains only clutter (i.e, x = w), by testing the hypotheses

H0 : x ∼ N (0, R)
H1 : x ∼ N (t, R) .

(6)

In this case, the log-likelihood ratio test in (5) has the form
of an inner product: l(x) = qt

x ≷ η′, where the vector q
#
=

R−1t is called a matched filter, and its detection capability is
measured directly by the signal-to-clutter statistic [6]:

SCR =
(qtt)2

E {(qtx)2}
=

(qtt)2

qtE {xxt} q
=

(qtt)2

qtRq
. (7)

B. Power Detector
Let the p-dimensional random vector x be drawn from a

multivariate normal distribution with the same mean under
both hypotheses but different covariances. The general hy-
potheses in (4) become

H0 : x ∼ N (0, RA)
H1 : x ∼ N (0, RB) .

(8)

For instance, the hypothesis test in (8) also corresponds to
the problem of anomalous change detection in multispectral
imagery modeled by Gaussian distributions [7].
We can compute the generalized eigen-decomposition [8]

that diagonalizes both RA and RB simultaneously, allowing
us to decorrelate the vector x under both hypotheses using

x̃ = Ẽt
BΛ−1/2

A Et
Ax , (9)

where EA and ΛA are the eigenvectors and eigenvalues 1 given
by

RA = EAΛAEt
A ,

and Λ̃B and ẼB are the eigenvalues and eigenvectors of the
matrix R̃B given by

R̃B
#
= Λ−1/2

A Et
ARBEAΛ−1/2

A = ẼBΛ̃BẼt
B .

The linear transformation of (9) is equivalent to the Fisher
linear discriminant (FLD) that is used to maximize the ratio
of the between class to within class scatter [8], [9], [10].
In this new space, the hypotheses in (8) are written in

terms of x̃ and become
H0 : x̃ ∼ N (0, I)

H1 : x̃ ∼ N (0, Λ̃B) .
(10)

Since x and x̃ are related by an invertible linear transforma-
tion, the log-likelihood ratio of (5) can be shown to be

l(x) = log

{
p(x;H1)

p(x;H0)

}
(11)

= −
p∑

i=1

(
1

λ̃Bi

− 1

)
x̃2

i +
p∑

i=1

log λ̃Bi , (12)

1All eigenvalues in ΛA are assumed here to be non-zero
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where λ̃Bi is the ith diagonal element of Λ̃B and x̃i is the ith
coordinate of the vector x̃.

C. Classification
Let y0 and y1, · · · ,yK all be p-dimensional random vec-

tors, and assume that each vector is formed by yk = xk +wk,
where xk ∼ N (0, Rx) is an unknown p-dimensional signal,
and wk ∼ N (0, Rw) is additive p-dimensional noise. Our
objective is to classify the vector y0 as a member of the
class k ∈ {1, · · · ,K} if the pair of vectors y0 and yk

constitute a match, i.e, they both originated from the same
signal: x0 = xk. Therefore, under the hypothesis of a match,
the difference ∆yk = yk − y0 ∼ N (0, 2Rw). Alternatively,
under the hypothesis that y0 and yk are not a match we have
that ∆yk ∼ N (0, 2(Rx + Rw)). In summary, the probability
density of the random vector ∆yk is given by

H0 : ∆yk ∼ N (0, 2(Rx + Rw)) if x0 &= xk

H1 : ∆yk ∼ N (0, 2Rw) if x0 = xk .
(13)

The maximum likelihood selection of k̂ is given by

k̂ = argmax
k

{
log

[
p(∆yk;H1)

p(∆yk;H0)

]}
. (14)

Following the same lines of Section III-B, we can compute
the generalized eigen-decomposition of both Rx and Rw, thus
allowing the computation of ∆ỹk from ∆yk , which is decor-
related under both hypotheses. As a result, the hypotheses in
(13) are equivalent to

H0 : ∆ỹk ∼ N (0, 2(Λ̃x + I)) if x0 &= xk

H1 : ∆ỹk ∼ N (0, 2I) if x0 = xk .
(15)

The selection of k̂ in (14) can be written in terms of the
coordinates of ∆ỹk and the diagonal elements of Λ̃x, resulting
in the expression

k̂ = arg max
k

{
log

[
p(∆yk;H1)

p(∆yk;H0)

]}

= arg min
k

{
p∑

i=1

(
λ̃xi

1 + λ̃xi

)

∆ỹ2
ki

}

, (16)

where λ̃xi is the ith diagonal element of Λ̃x and ∆ỹki is the
ith coordinate of the vector ∆ỹk.

D. Hypothesis Testing using SMT
In Section III-B, the generalized eigendecomposition of the

covariance matrices RA and R̃B is a key step for the computa-
tion of the log-likelihood test (12). We use the SMT to perform
the generalized eigendecomposition of RA = EAΛAEt

A and
R̃B = ẼBΛ̃BẼt

B , with r1 and r2 rotations per coordinate
respectively. We apply the SMT for the computation of the
following steps:
1) Compute x

′ = Λ−1/2

A Et
Ax, requiring (2r1+1)p floating-

point operations. At the end, we may choose to clip a
fraction of the p dimensions and keep only αp of them,
with α ∈ [0, 1].

2) Compute x̃ = Ẽt
Bx

′, requiring (2r2 + 1)αp operations.

3) Compute the sum in (12) , equiring a total of 2αp
floating-point operations.

The steps above amount to a total of [2(r1+αr2)+3α+1]p, i.e,
O(p) floating-point operations, were α ∈ [0, 1]. These same
steps are used to compute the generalized eigen-decomposition
of Rx and Rw in Section III-C, and the log-likelihood ratio
used in (16).

IV. EXPERIMENTAL RESULTS
A. Face Recognition
The SMT classification developed in Section III-C is applied

to the task of face recognition. We evaluate the SMT-based
face recognition with the FERET test protocol and dataset [11],
and compare it against the LDA face recognition method [10],
a conceptually similar method but that relies on dimensionality
reduction to handle the high-dimensional face data. We also
compare with a regularized version of LDA using shrinkage
covariance estimation. The FERET protocol splits the data
into two disjoint sets: the training set, with face images of
221 individuals/ three different frontal images per individual,
and the gallery set, with face images of 160 individuals/
four different frontal images per individual. After training the
classifier with images of the training set, we simulate the
recognition process by randomly picking one image from the
gallery set and searching it against the whole gallery. The
system returns all candidates sorted by the likelihood of being
a match. If the searched individual appears among the top ρ
likely matches in a fraction f of all the searches, we say the
rank-ρ recognition rate is f .
Fig. 1 compares the recognition rates of several classifiers,

each using a different method for covariance estimation. The
SMT is used both as a standalone method for the covariance
estimation, referred as SMT, as well as the shrinkage target,
referred as S-SMT. Both SMT-based methods are compared
with shrinkage toward identity (S-I) and the LDA face recog-
nition method [10]. The Shrinkage/SMT (S-SMT) performs
best among all compared methods. The SMT and Shrink-
age/Identity (S-I) methods exhibit almost identical accuracies.
Finally, all regularized methods compared are more accurate
than the LDA.
As discussed in the Section III-D, the computational cost

associated with the application of the SMT is O(p), compared
to O(p2) required to apply the S-SMT and the S-I methods.
Therefore, the SMT can be deployed in an environment with
limited computational resources delivering competitive accu-
racy to the one of the computationally expensive shrinkage
estimation.

B. Hyperspectral Image Processing
We use hyperspectral data to measure the performance of

the matched filter and the power detector described in Sections
III-A and III-B respectively.
Fig. 2 shows the area under the ROC curve for the power

detector presented in Section III-B using several methods. The
true covariances RA and RB are known. In such scenario,
the accuracy of the SMT-based method approaches the one of
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Fig. 1. Face recognition rates for ranks 1-60 using different classifiers,
SMT, LDA, Shrinkage/Identity (S-I), and Shrinkage/SMT (S-SMT),
trained with 221 individuals / 3 images per individual.
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Fig. 2. Area under the ROC curve for the SMT as the number
of Givens rotations varies. Only a few SMT’s Givens rotations are
necessary to get most of the detection accuracy given by the exact
generalized eigen-decomposition of the true covariance matrices.

the exact generalized eigen-decomposition with only a small
number of Givens rotations per coordinate.
Fig. IV-B shows the detection capability of the matched

filter presented in Section III-A measured by the SCRR =
SCR/SCR0 statistic, where SCR0 is the value of the ratio in
(7) for the true covariance R. Therefore, normally we expect
SCRR < 1. When SCRR = 1, the detection accuracy is
equivalent of the one in the situation that the true covariance
R of the clutter is known. We varied the number of training
samples n used to estimate R̂. The results are averages over
10 trials, each using a different signal t and n different
training samples. Notice that the SMT-based detectors perform
substantially better than the ones using shrinkage and sample
covariance estimates when the training set is small.

V. CONCLUSIONS
We presented a framework for hypothesis testing in high-

dimensional space using the SMT to model the covariance
structure of the high-dimensional data. Results show that the
SMT methods for detection and classification can have advan-
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Fig. 3. SCRR for hyper-spectral image AVIRIS-FLA using sev-
eral different estimators: Sample covariance, SMT, Shrinkage /Iden-
tity (S-I), Shrinkage/SMT (S-SMT), graphical-SMT (gc-SMT), and
Shrinkage/graphical-SMT (S-gc-SMT). Average of 10 trials (each
with different signal t and different set of n samples).

tages over other methods in the following important aspects.
First, the log likelihood ratio test remains robust when few
training samples are available to train the covariance matrices
involved. Second, it operates directly in high-dimensional data
at a low computational cost. Finally, the SMT can be used
to improve the accuracy of shrinkage estimation when it is
computationally feasible.
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